
Kyle Hill Developer’s Manual

 Page 1 of 25

Developer’s Manual

For agentTool 3

Kyle Hill
November 25, 2007

Kansas State University

Kyle Hill Developer’s Manual

 Page 2 of 25

Table of Contents

1. Introduction………………………………………………………………...

3

2. Relationship to GEF………………………………………………………..

5

3. The Core Plug-in…………………………………………………………...

6

4. agentTool Package Overview………………………………………………

7

 4.1 The Command Package………………………………………………

10

 4.2 The Editor Package…………………………………………………..

11

 4.3 The Figure Package…………………………………………………..

12

 4.4 The Model Package…………………………………………………..

13

 4.5 The Part Package……………………………………………………..

15

 4.6 The Policy Package…………………………………………………..

16

 4.7 The XML Package……………………………………………………

17

5.

Releasing an Update.. 18

6. Extending agentTool: An Example.. 20

7. Additional Reading……………………………………………………….... 25

Kyle Hill Developer’s Manual

 Page 3 of 25

1. Introduction

The agentTool website describes agentTool as:

“… a Java-based graphical development environment to help users analyze, design, and

implement multiagent systems. It is designed to support the new Organization-based

Multiagent Systems Engineering (O-MaSE) methodology. The system designer defines

high-level system behavior graphically using the flexible O-MaSE methodology.”

agentTool is a suite of Eclipse plug-ins that facilitate the design and analysis of multiagent

systems. Currently, agentTool provides eight diagramming plug-ins. The following plug-ins are

included in agentTool as of the 1.0.5 release:

 Agent Diagram

 Capability Diagram

 Domain Diagram

 Goal Diagram

 Organization Diagram

 Plan Diagram

 Protocol Diagram

 Role Diagram

Additionally, agentTool provides validation, code generation, and policy creation plug-ins. The

code generation and policy creation plug-ins are currently under development are expected to be

included in the next agentTool release.

To get started developing agentTool, you must first check out the latest development code from

the K-State CIS projects server. You must first setup a CVS account by requesting one from the

projects server administrator. Once you have your account, open the “CVS Repository

Browsing” perspective in Eclipse. Next, right-click in the “CVS Repositories” view and select

“New Repository Location” to start the wizard. Then fill out the text boxes as follows:

http://macr.cis.ksu.edu/O-MaSE

Kyle Hill Developer’s Manual

 Page 4 of 25

The connection should be successful and a new CVS location will appear in the “CVS

Repositories” view. Expand the HEAD node in the tree and select the desired project to check

out. Note that you must also check out the Core project as all other agentTool projects depend

upon Core.

You should now be ready to start development in agentTool. Always keep in mind that code in

the CVS repository represents the official state of the project, you must always be sure to

synchronize your local copy with the repository when you make changes.

Kyle Hill Developer’s Manual

 Page 5 of 25

2. Relationship to GEF

agentTool is built as an Eclipse plug-in and requires JDK 1.5 or greater to compile. agentTool

makes use of the Eclipse Graphical Editing Framework (GEF), which in turn relies on the

Eclipse Draw2d, JFace, and SWT APIs.

Adapted from Eclipsecon 2005 GEF Tutorial

To compile and run agentTool, the GEF feature must be installed on your local copy of Eclipse.

Specifically, the following packages must be available at runtime:

 org.eclipse.gef

 org.eclipse.ui.views

 org.eclipse.core.runtime

 org.eclipse.ui.forms

 org.eclipse.ui

 org.eclipse.ui.ide

 org.eclipse.core.resources

Additionally, the agentTool Core Plug-in must also be available at runtime:

 edu.ksu.cis.agenttool.core

Since agentTool inherits the vast majority of its functionality from GEF always attempt to extend

existing GEF classes when implementing new features. This helps keep us up to date with the

latest GEF API and allows us to inherit a large number of features “for free”. Also, keep in mind

that GEF provides a wide array of functionality that we do not currently take advantage of in

agentTool. When implementing a new feature, avoid re-inventing the wheel and check to see if

GEF has already done the hard work for you.

Kyle Hill Developer’s Manual

 Page 6 of 25

3. The Core Plug-in

agentTool uses a strong Object-Oriented and Design Pattern-based architecture. This Object-

Oriented architecture extends to the relationships between plug-ins. The bulk of agentTool code

is located in the Core plug-in. This plug-in contains code common across all other agentTool

plug-ins. Other plug-ins should extend the base classes that are in core to provide their own

diagram-specific functionality.

 All classes that define the model should be located in the Core plug-in so that any classes can

reference the complete agentTool model without needing to know about other diagrams. For

example, the Validation plug-in only has to rely on the Core plug-in to have access to the entire

agentTool model. This decouples design plug-ins that manipulate the model from analysis plug-

ins that simply need to reference the model.

Classes in core that are intended to be extended for diagram-specific functionality contain the

Abstract prefix. Classes that can reasonably be reused as-is with no modification contain the

Core prefix. However, diagram-specific behavior occasionally requires these classes to be

extended.

The following figure shows the current agentTool plug-in hierarchy:

Kyle Hill Developer’s Manual

 Page 7 of 25

4. agentTool Package Overview

agentTool is built upon GEF, which makes use of the MVC architecture and a variety of Object-

Oriented design patterns. agentTool inherits GEF’s MVC architecture, and the package structure

of agentTool reflects this. agentTool can be broken down into a small set of packages that each

perform a well-defined role.

 Action – The Action package handles integration with the Eclipse workbench. Its job is

to define Toolbars, Menus, Shortcut-Keys, and their associated actions.

 Command – The Command package abstracts manipulation of the diagram model by

encapsulating changes within well-defined commands. This decoupling allows for

undo/redo support and increased code reuse.

 DirectEdit – The DirectEdit package provides utility methods for interacting with the

canvas through direct-edit requests. Direct editing consists of double-clicking on a figure

in the canvas and modifying its contents without launching a new view or dialog.

 Editor – The Editor package contains all editors, views, and wizards. This package is

mainly concerned with interfacing agentTool with the Eclipse workbench.

Kyle Hill Developer’s Manual

 Page 8 of 25

 Figure – The Figure package defines the view for the plug-in. All visible items on the

canvas are defined in this package.

 Model – The Model package defines the data model for the plug-in. It contains the data

and methods that define a given diagram. When developing a new diagram, one should

always define classes in the Model package first.

 Part – The Part package contains controllers that are each associated with an object from

the Model package in a 1-to-1 fashion. All property changes in the model trigger

handlers defined in the part package. These handlers ensure that the view of the model

always stays up to date.

 Policy – The Policy package defines the rules for user interaction with the model. It

determines the set of legal actions and then dispatches an appropriate command to update

the model.

 XML – The XML package handles model serialization. The XMLWriter class contains

methods to help write valid and well-formed XML. The XMLParser class reads the

XML file from the disk and returns a new diagram schema.

Adapted from Eclipsecon 2005 GEF Tutorial

In MVC terms, the Figure package makes up the view, the Model package is the model, and the

Part, Policy, and Command packages together make up the controller. Every object in the model

has an EditPart associated with it. ModelElements are associated with ModelElementParts,

Schemas with DiagramEditParts, and Relationships with RelationshipEditParts. The part acts as

the controller for its model object. Every EditPart is also associated with a figure that represents

the state of its model element on the canvas.

The following is a simple example of how all these pieces fits together. In this example, we will

assume that the user selects the new Goal tool from the palette.

Kyle Hill Developer’s Manual

 Page 9 of 25

1. When the user clicks on the diagram with the tool, the DiagramEditPart detects the click

and forwards the request to its associated CreateEditPolicy.

2. First, the CreateEditPolicy determines if a new Goal can be constructed based on the

request. If it can, it then creates a new CreateGoalCommand and executes it.

3. The CreateGoalCommand constructs a new Goal ModelElement and adds it to the

Schema’s list of children.

4. This addition causes the Schema to fire a new PropertyChangeEvent that is detected by

the DiagramEditPart.

5. The DiagramEditPart calls its refreshChildren() method which causes all child EditParts

to refresh their Figure to reflect this change.

6. When the Goal was created, a new ModelElementPart was also created using the

EditPartFactory. The EditPartFactory defines the association between model objects and

their EditParts.

7. Finally, ModelElementPart determines what Figure should be associated with Goals and

paints the correct Figure in response to the refreshChildren() call from DiagramEditPart.

Kyle Hill Developer’s Manual

 Page 10 of 25

4.1 The Command Package

The Command package abstracts manipulation of the diagram model by encapsulating changes

within well-defined commands. This decoupling allows for undo/redo support and increased

code reuse.

There are five general classes of commands. Each class reflects the various ways the model can

be modified:

 Create – Creates a new PropertyAwareObject. These commands setup a new

PropertyAwareObject’s fields and then add it their parent’s list of children. For example,

the CreateActorCommand assigns a new Actor a unique name, bounds, and a parent. It

then adds the new Actor to its parent’s list of children. Each of these changes modifies

some part of model, which, in turn, fires a PropertyChangeEvent that updates the view to

reflect these changes.

 Delete – Removes an existing PropertyAwareObject from its parent. This class of

commands, as well as all others, fires PropertyChangeEvents similarly to the Create

class. Executing a delete command will remove a PropertyAwareObject from the model.

 Move – Modifies the view of a model object in some way. This class of commands

simply changes the bounds of a PropertyAwareObject in the model.

 Change – Modifies any other property of a model object. This class of commands

modifies some property of a PropertyAwareObject.

 Set – Changes a group of properties in a model object at the same time. This class of

commands is generally used to assign a list of children to a PropertyAwareObject. For

example, a Goal object can be assigned a list of Parameters using the

SetParametersCommand.

Whenever you wish to update the model in response to a user action, you should encapsulate that

change inside of a command. Commands are executed through the Workbench’s

CommandStack and therefore inherit support for undo and redo operations. Additionally, by

forcing model updates to be performed through a small set of well-defined commands, the model

can be effectively decoupled from the controller.

Kyle Hill Developer’s Manual

 Page 11 of 25

4.2 The Editor Package

The Editor package contains all editors, views, and wizards. This package is mainly concerned

with interfacing agentTool with the Eclipse workbench.

 DiagramEditors – DiagramEditors define the canvas and palette on which a plug-in

operates. The AbstractDiagramEditor class is one of the most important classes in

AgentTool. This class handles most of the interfacing between AgentTool and the rest of

Eclipse. To modify a property that affects all diagrams, edit the AbstractDiagramEditor

class.

 Palettes – Palettes define the set of tools that a user can use to modify a diagram.

Typically, the set of tools consists of a selection tool and various component and

relationship creation tools.

 Views – AgentTool makes use of a variety of PropertiesViews to provide a user interface

for editing various object model properties. For example, the GoalPropertiesView

provides an interface to modify a Goal’s name, number, description, definition,

preference, and set of associated parameters. Views allow complex user interactions to

be encapsulated within a compact interface.

 Wizards – AgentTool uses Wizards to generate an initial diagram or rule. They typically

prompt the user for required information and construct a skeleton diagram before handing

over control to the appropriate editor.

The Editor package is tightly integrated with the Eclipse workbench. Often, when new Eclipse

versions are released, classes in the Editor package need to be updated to provide access to new

features, or accommodate API changes.

Kyle Hill Developer’s Manual

 Page 12 of 25

4.3 The Figure Package

The Figure package defines the view for the plug-in. All visible items on the canvas are defined

in this package.

 PropertyAwareFigure – PropertyAwareFigure is the base class for all other figures. This

class adds support for name labels.

 ModelElementFigure – ModelElementFigure provides an area, InnerFigure, that allows

child figures to be associated with a figure. Nearly every ModelElementPart uses

ModelElementFigure, or one of its subclasses, to represent its model. Additionally, this

class adds support for stereotype labels.

 InnerFigure – InnerFigure provides an area for child figures, usually Columns or Labels,

to be added to a parent.

Most diagrams contain their own diagram-specific figures that add support for user interface

elements that are not needed by other diagrams. For example, the Goal diagram creates its own

GoalFigure that adds support for a numberLabel, and a list of child parameters. Nevertheless,

diagram-specific figures still must extend a base class in the Core plug-in to avoid breaking

compatibility.

Kyle Hill Developer’s Manual

 Page 13 of 25

4.4 The Model Package

The agentTool object model closely resembles the model defined by the GEF. The data model is

defined by objects in the edu.ksu.cis.agenttool.core.model packages. Each diagram defines its

own object model. However, all data models are similar, for example, the DomainDiagram’s

model looks like this:

 PropertyAwareObject – PropertyAwareObject is the base model class in agentTool. All

other model objects should extend this class. PropertyAwareObject adds support for

EditPart change listeners, as well as object name and visibility attributes.

 Schema – Schema is the primary model object in the diagram. One could think of the

Schema as the object that represents the canvas; it contains all ModelElements and their

associated Relationships. In addition, this class contains a number of helper methods to

make model manipulation easier. Whenever a new diagram type is created, the Schema’s

DiagramType enumeration must be updated to add support for the new diagram.

 ModelElement – ModelElement is the base class for all diagram-specific model objects.

This class adds support for relationships and figure bounds attributes. Additionally, this

class contains a number of helper methods for manipulating ModelElements. Whenever

a new ModelElement type is created, the ModelElementType enumeration must be

updated to add support for the new ModelElement.

Kyle Hill Developer’s Manual

 Page 14 of 25

 Relationship – Relationship represents all connections between ModelElements. This

class is only subclassed to add support for additional diagram-specific attributes. In

general, however, this class does not need to be extended by diagrams wishing to use it.

Diagrams must simply add a new relationship type to the RelationshipType enum to add

support for new relationships.

Additionally, each diagram will also stipulate its own diagram-specific model. However, unlike

other packages, the entire model must be located inside the Core plug-in. When diagram-

specific classes are created, they should be placed in the diagram’s sub package within the

edu.ksu.cis.agenttool.model package.

Kyle Hill Developer’s Manual

 Page 15 of 25

4.5 The Part Package

The Part package contains controllers that are each associated with an object from the Model

package in a 1-to-1 fashion. All property changes in the model trigger handlers defined in the

part package. These handlers ensure that the view of the model always stays up to date.

 AbstractModelElementPart – AbstractModelElementPart acts as the controller for all

ModelElements. This part does not install any policies, but instead relies on specific

diagrams to install their own policy support. For example, the ProtocolDiagram allows

some of its ModelElements to contain other ModelElements, however, not all diagrams

do. Therefore, the ProtocolDiagram contains a ModelElementPart that extends

AbstractModelElementPart that installs the correct edit policies. In addition to policies,

this part delegates figure creation to its subclasses. This allows all ModelElements to

have common event handling code, but separates presentation and diagram-specific logic.

 AbstractRelationshipPart – The AbstractRelationshipPart works similarly to the

AbstractModelElementPart, except it acts as the controller for Relationships. One

important difference, however, is that this part installs a set of policies that are common

among all Relationships.

 CoreDiagramPart – CoreDiagramPart acts as the controller for the canvas. Primarily, this

class is concerned with ModelElement and Relationship layout. Unlike other Core part

classes, this class usually does not need to be extended. Occasionally, however, a

diagram will need to override the default functionality provided by this class. For

example, the ProtocolDiagram extends CoreDiagramPart to remove support for automatic

relationship layout.

Every diagram will include its own diagram-specific parts. Typically, the part and policy

packages contain very diagram-specific code. Classes in the Core plug-in provide a solid

framework to build upon, but it is up to the individual plug-in to complete the implementation.

Kyle Hill Developer’s Manual

 Page 16 of 25

4.6 The Policy Package

The Policy package defines the rules for user interaction with the model. It determines the set of

legal actions and then dispatches an appropriate command to update the model. All policies are

installed by and owned by specific EditParts.

 AbstractRelationshipCreateEditPolicy – AbstractRelationshipCreateEditPolicy specifies

which Relationships can connect to which ModelElements. This class is very diagram-

specific and contains the bulk of the logic that differentiates one diagram from another.

 CoreElementDeleteEditPolicy – CoreElementDeleteEditPolicy simply bridges delete

requests from all ModelElementParts with their appropriate DeleteElementCommand.

This class rarely needs to be extended.

 CoreLayoutEditPolicy – CoreLayoutEditPolicy defines how ModelElements can be laid

out on the canvas. Typically, this class restricts certain ModelElements from being

resized. This class also handles the translation between absolute and relative coordinates.

 CoreRelationshipDeleteEditPolicy – CoreRelationshipDeleteEditPolicy simple bridges

delete requests from all RelationshipParts with their appropriate

DeleteRelationshipCommand. This class has yet to be extended.

In addition to the above classes, each diagram can provide its own diagram-specific policies.

Kyle Hill Developer’s Manual

 Page 17 of 25

4.7 The XML Package

The XML package handles model serialization. The XMLWriter class contains methods to help

write valid and well-formed XML. The XMLParser class reads the XML file from the disk and

returns a new diagram schema.

agentTool uses XML to serialize its object model. XML allows a wide variety of other tools to

interface with agentTool without having to have knowledge of agentTool’s inner workings. The

Validation plug-in takes advantage of this decoupling and has very little in common with

agentTool besides the shared data model.

When a diagram is saved the DiagramEditor creates a stub XML file and then calls the

writeXML() method in the Schema class, which in turn calls the writeXML() method in all of its

children objects. To read in the XML document, the DiagramEditor creates a new XMLParser

and passes the path of the XML file to read. The XMLParser then uses the built-in Java DOM

parser to construct an in-memory object model that is represented by the Schema object.

Kyle Hill Developer’s Manual

 Page 18 of 25

5. Releasing an Update

agentTool releases are very simple to build and maintain. The meta-project AgentTool3 contains

all the necessary files to create a new official release and update site. When you wish to release

a new version of agentTool, simply check out the AgentTool3 project from CVS and open the

site.xml file in Eclipse. This will open the “Update Site Editor”:

 Double-click on the edu.ksu.cis.agenttool feature from the site dialog; this will open the

“Feature Editor”:

Kyle Hill Developer’s Manual

 Page 19 of 25

Increment the version number by one to signify a new release. Note that Eclipse version

numbers have special significance for backwards compatibility. Do not bump the first or second

number unless you intend to break backwards compatibility with this release.

Next, close the “Feature Editor” and return to the “Update Site Editor”. To build a new release,

click the “Build All” button. The Eclipse builder will run and generate a new set of .jar files for

the new release.

From here, you can upload the contents of the AgentTool3 project to:

http://agenttool.projects.cis.ksu.edu/update/ to allow users to automatically update their pre-

installed older version. Alternatively, you can package the contents of the AgentTool3 project in

a .zip file to allow web distribution.

See the article: Keeping Up To Date: http://www.eclipse.org/articles/Article-Update/keeping-

up-to-date.html for additional information about the automatic updates process.

http://agenttool.projects.cis.ksu.edu/update/
http://www.eclipse.org/articles/Article-Update/keeping-up-to-date.html
http://www.eclipse.org/articles/Article-Update/keeping-up-to-date.html
http://www.eclipse.org/articles/Article-Update/keeping-up-to-date.html

Kyle Hill Developer’s Manual

 Page 20 of 25

6. Extending agentTool: An Example

agentTool is designed to be easily extended to add new features and support new modeling

capabilities. In this example, we will walk through the addition of simple ModelElement called

Plan to the Capability-Action Diagram. For simplicity in our example, the Plan ModelElement

will not contain any children, such as parameters, attributes, or constraints. It will also not be the

source of any Relationships to other ModelElements. The Plan ModelElement will only allow

the “performs” relationship to connect to it.

The first thing that one must consider when adding new modeling capabilities is how the data

will be structured and stored between editing sessions. These considerations are the

responsibility of the Model package. The Model package is contained entirely within the Core

plug-in.

First, since we are creating a new ModelElement type, we must create a new entry in the

ModelElementType enumeration in the ModelElement class, we will call our new entry

ModelElementType.PLAN. Additionally, we need to add a new String entry to the

XMLConstants class:

public static final String PLAN = "Plan";

Next, we must define the Plan Model class. This class will extend ModelElement and implement

its abstract methods, namely writeXML() and getType():

public class Plan extends ModelElement {

 public Plan() {

 super();

 }

 public Plan(String n, Rectangle bounds, Schema s) {

 super(n, bounds, s);

 }

 @Override

 public ModelElementType getType() {

 return ModelElementType.PLAN;

 }

 @Override

 public String writeXML() {

 // open element

 StringBuilder xml = new StringBuilder();

 xml.append(XMLWriter.openElement(XMLConstants.PLAN, this));

 // this element has no children

 // close element

 xml.append(XMLWriter.closeElement(XMLConstants.PLAN));

 return xml.toString();

 }

}

Kyle Hill Developer’s Manual

 Page 21 of 25

The getType() method is used to identify this ModelElement by assigning it a unique identifier.

The writeXML() method is called by the Schema object to generate the correct XML for a Plan

object.

Next, we need to define the controller for our new Plan ModelElement. In the Part package of

the CapabilityDiagram plug-in, we need to create a new class called PlanPart. This class will

extend AbstractModelElementPart and implement its abstract createEditPolicies() and

createFigure() methods:

public class PlanPart extends AbstractModelElementPart {

 @Override

 protected void createEditPolicies() {

 installEditPolicy(EditPolicy.GRAPHICAL_NODE_ROLE,

new RelationshipCreateEditPolicy());

 installEditPolicy(EditPolicy.COMPONENT_ROLE,

new CoreElementDeleteEditPolicy());

 installEditPolicy(EditPolicy.DIRECT_EDIT_ROLE,

new CoreDirectEditPolicy());

 }

 @Override

 protected IFigure createFigure() {

 return new ModelElementFigure(getModel().getName(), "«Plan»");

 }

}

The createEditPolicies() method essentially assigns roles that this EditPart plays by associating it

with various Policies. In our example, PlanPart is assigned roles that allow it to be deleted,

direct-edited, and allow relationships to be connected to it.

Now that we have created our Model and our controller, we need to associate them with each

other. To make this association, we need to add a new case to CapabilityDiagram’s

DiagramEditPartFactory class. Simply add the following lines to the createEditPart() method

right before the last statement:

else if (obj instanceof Plan) {

 editPart = new PlanPart();

}

Our next task is to make sure that the policies that we installed in PlanPart can accommodate the

addition of a new Part. Neither the CoreElementDeleteEditPolicy or the CoreDirectEditPolicy

need any modifications. However, we will have to update the RelationshipCreateEditPolicy in

the CapabilityDiagram Plug-in to add support for Plan objects. In this case, we simply need to

change one line in the getConnectionCompleteCommand() method to allow “performs”

relationships to connect to PlanParts:

case PERFORMS:

 if ((child instanceof ActionPart) || (child instanceof PlanPart)) {

 cmd.setChild(element);

 return cmd;

Kyle Hill Developer’s Manual

 Page 22 of 25

 }

 break;

In addition to the previously mentioned policies, we must always update our diagram’s

LayoutEditPolicy to add support for our new Plan object. We must add a new case to the

getCreateCommand() method:

case PLAN:

 return new CreatePlanCommand((Plan) modelElement

 (Rectangle) getConstraintFor(request), (Schema) getHost().getModel());

This policy handles requests that are generated by tools from the palette. We will update the

Palette shortly to add support for our new Plan object. However, first, we must define the

CreatePlanCommand class that we just referenced in LayoutEditPolicy:

public class CreatePlanCommand extends Command {

 private final Rectangle bounds;

 private final Plan plan;

 private final Schema schema;

 public CreatePlanCommand(Plan p, Rectangle b, Schema s) {

 plan = p;

 bounds = b;

 schema = s;

 }

 @Override

 public void execute() {

 if (plan.getName().equals("")) {

 plan.setName(schema.generateUniqueName(XMLConstants.PLAN));

 }

 plan.setParent(schema);

 plan.setBounds(bounds);

 schema.addChild(plan);

 }

 @Override

 public void undo() {

 schema.removeChild(plan);

 }

}

This class initializes a new Plan object by assigning it an initial name and bounds, and then

associating it with its parent, the Schema.

Now we need to update this diagram’s palette so that we can create new Plan objects. Inside the

PaletteViewerCreator class, we need to define a pair of String constants (we will assume that the

icon file already exists):

private static final String PLAN = "Plan";

private static final String PLAN_ICON = "icons/c_plan.png";

Kyle Hill Developer’s Manual

 Page 23 of 25

And add the following line in the CreatePaletteRoot() method:

compDrawer.add(new CombinedTemplateCreationEntry(PLAN, DESCRIPTION + PLAN + "

", Plan.class, new SimpleFactory(Plan.class), getIcon(PLAN_ICON),

getIcon(PLAN_ICON)));

The Plan object can now be added to Capability diagrams. The only other thing that we must do

is update the XMLParser class to add support for reading. In the XMLParser class we have to

define a new method, addPlans():

private void addPlans(Schema schema) {

 // add plans to schema

 NodeList list = document.getElementsByTagName(XMLConstants.PLAN);

 for (int i = 0; i < list.getLength(); i++) {

 Node node = list.item(i);

 try {

 Plan plan = new Plan(getRequiredString(node, XMLConstants.NAME),

 getBounds(node), schema);

 schema.addChild(plan, false);

 // plans don't currently have any children

 } catch (XMLParseException e) {

 IStatus status = new Status(IStatus.WARNING,

 CorePlugin.PLUGIN_ID, 0, e.getMessage(), e);

 CorePlugin.getDefault().getLog().log(status);

 continue;

 }

 }

}

And then call it from the Capability diagram case in the getSchema() method:

case CAPABILITY:

 // add capability model elements to schema

 addCapabilityActions(schema);

 addCapabilities(schema);

 addPlans(schema);

 break;

We have now finished adding our new ModelElement to the Capability diagram! Often, new

features will require changes other than ones that have been outlined here; however, this example

provides an excellent starting point for adding new features.

Kyle Hill Developer’s Manual

 Page 24 of 25

7. Additional Reading

agentTool is distributed with a full set of Javadoc documentation. This documentation should be

the first place to look for answers to agentTool development questions. The most current version

of Javadoc documentation can be checked out from CVS. Each plug-in contains its own /doc/

directory that holds the relevant documentation.

Since agentTool closely mimics the structure of the GEF framework, a variety of relevant GEF

documentation exists:

 Building a Database Schema Diagram Editor with GEF

http://www.eclipse.org/articles/Article-GEF-editor/gef-schema-editor.html

 Create an Eclipse-based application using the Graphical Editing Framework

http://www-128.ibm.com/developerworks/opensource/library/os-gef/

 Displaying a UML Diagram using Draw2D

http://www.eclipse.org/articles/Article-GEF-Draw2d/GEF-Draw2d.html

 EclipseWiki GEF

http://eclipsewiki.editme.com/GEF

 Other GEF Documentation

http://www.eclipse.org/gef/reference/articles.html

 GEF Redbook

http://www.redbooks.ibm.com/redbooks/SG246302/

 GEF Tutorial

http://www.eclipsecon.org/2004/EclipseCon_2004_TechnicalTrackPresentations/47_Hud

son.pdf

Also, the GEF examples plug-in is also very instructive. The following diagrams and their

source code are included in the org.eclipse.gef.examples package:

 LogicDiagram

 ShapesDiagram

 FlowDiagram

Finally, since agentTool was originally built through a series of MSE projects, the following

links may also be of use:

 MSE Portfolio – Deepti Gupta (Agent, Goal, Role, Organization Plug-ins)

http://mse.cis.ksu.edu/deepti/

 MSE Portfolio – Binti Sepaha (Plan and Protocol Plug-ins)

http://mse.cis.ksu.edu/binti/

http://www.eclipse.org/articles/Article-GEF-editor/gef-schema-editor.html
http://www.eclipse.org/articles/Article-GEF-editor/gef-schema-editor.html
http://www-128.ibm.com/developerworks/opensource/library/os-gef/
http://www-128.ibm.com/developerworks/opensource/library/os-gef/
http://www.eclipse.org/articles/Article-GEF-Draw2d/GEF-Draw2d.html
http://www.eclipse.org/articles/Article-GEF-Draw2d/GEF-Draw2d.html
http://eclipsewiki.editme.com/GEF
http://eclipsewiki.editme.com/GEF
http://www.eclipse.org/gef/reference/articles.html
http://www.eclipse.org/gef/reference/articles.html
http://www.redbooks.ibm.com/redbooks/SG246302/
http://www.redbooks.ibm.com/redbooks/SG246302/
http://www.eclipsecon.org/2004/EclipseCon_2004_TechnicalTrackPresentations/47_Hudson.pdf
http://www.eclipsecon.org/2004/EclipseCon_2004_TechnicalTrackPresentations/47_Hudson.pdf
http://www.eclipsecon.org/2004/EclipseCon_2004_TechnicalTrackPresentations/47_Hudson.pdf
http://mse.cis.ksu.edu/deepti/
http://mse.cis.ksu.edu/deepti/
http://mse.cis.ksu.edu/binti/
http://mse.cis.ksu.edu/binti/

Kyle Hill Developer’s Manual

 Page 25 of 25

 MSE Portfolio – Patrick Gallagher (Validation Plug-in)

http://people.cis.ksu.edu/~psg9999/classes/MSE/index.html

Note that agentTool has undergone very significant structural changes since these MSE projects

have been completed. Not all of the information on these pages is accurate.

http://people.cis.ksu.edu/~psg9999/classes/MSE/index.html
http://people.cis.ksu.edu/~psg9999/classes/MSE/index.html

